
Secure Coding Assistant

Enforcing Secure Coding Practices Using the Eclipse Development Environment

Benjamin White, Jun Dai, and Cui Zhang
Computer Science Department, California State University Sacramento
ben_white@att.net, jun.dai@csus.edu, zhangc@csus.edu

ABSTRACT
Developing secure software in a world where companies like
Anthem Blue Cross, Twitter, Facebook, and Target have
had massive amounts of data stolen by hackers is as chal-
lenging as it is important. Insecure coding practices are ma-
jor contributors to software security vulnerabilities. What
is missing is an open-source secure coding enforcement tool
utilizing well-documented rules that software developers can
use to predict potential pitfalls, learn from their mistakes
and aid in the construction of secure programs as they build
them. To address the need, we have designed a new tool
called Secure Coding Assistant for the Eclipse Development
Environment that semi-automates several secure coding ru-
les set forth by the CERT division at Carnegie Mellon Uni-
versity. The tool detects violations of the CERT rules for
the Java programming language but it is easily extensible to
other languages supported by Eclipse. It is an open-source
tool with an emphasis on educating software developers in
secure coding practices. The tool is disseminated via github
at http://benw408701.github.io/SecureCodingAssistant/.

1. INTRODUCTION
Finding secure coding standards is not difficult but follow-

ing them is. In a 2011 study [20], Veracode analyzed over
6,750 web applications and found that a third of these had
SQL code injection vulnerabilities. According to the study,
secure coding experts documented how to address these vul-
nerabilities over a decade ago and it involves something as
simple as parameterized SQL statements [20]. A study in
India [5] found that less than 1% of engineering students
are skilled in secure programming. Even the most “security
aware” professionals are writing their code first then adding
security as an afterthought [12]. The evidence indicates that
there is an overwhelming lack of knowledge and experience
when it comes to developing secure software.

Coding for software security is an extremely important
issue. In 2013 Facebook, Twitter and Apple were all tar-
gets of large-scale attacks. The Twitter attack resulted in
250,000 stolen usernames, passwords and other personal in-
formation [18]. Later that year Target was a victim of a
security breach and as many as 40 million credit and debit
card accounts were compromised [6]. Home Depot’s 2,157
stores fell prey to a data security breach in 2014 [2]. CNN
[3] also reported two alarming attacks on our government.
In July 2014, the Department of Energy was hacked and the
attackers stole 100,000 records of personally identifiable in-
formation. Earlier in the year, the Army Corps of Engineers
lost information on 85,000 dams across the nation. Lastly,

the medical industry has been a large target; Anthem Blue
Cross had a staggering “millions” of personal health records
stolen [4]. If these companies had software systems devel-
oped to a higher degree of secure coding standards, these
incidents would have been less likely to have occurred.

Every year there are thousands of newly documented soft-
ware vulnerabilities. The Common Vulnerability Enumera-
tion (CVE) is a database of known security vulnerabilities
that is commonly cross-referenced by security tools and is
one of the most recognizable vulnerability databases today.
The list of vulnerabilities may be accessed online at [16] in a
raw format. The published vulnerabilities count in the thou-
sands year over year, starting with a mere 1,500 in 1999 when
CVE was founded and leaping past 7,000 in 2014. There is
no possible way that a software developer could be expected
to learn thousands of CVE’s and understand how to write
secure code that is resilient against them. The Software En-
gineering Institute (SEI) of Carnegie Mellon University has
made it so that they do not have to. SEI’s CERT division
documents secure coding rules and recommendations that
are language-specific and help protect against these thou-
sands of known vulnerabilities [14]. For instance, there are
only 160 secure coding Java rules published by CERT as op-
posed to the tens of thousands of published CVE’s.

The goal of the Secure Coding Assistant is to alert de-
velopers when they have violated a CERT rule, educate
them on proper secure coding practices and provide an open-
source tool to the development community. Though other
tools exist that implement some of the CERT rules, the Se-
cure Coding Assistant is the only tool that specializes in
CERT rules and is open source. The initial version focuses
on Java and educates developers in secure coding practices.

2. RELATED WORK
There are many tools available to developers for building

secure applications. In Table 1, several of these tools are
compared. The first three are widely used commercial tools
and the remaining eight represent a comprehensive list of
vulnerability detection plugins for the Eclipse Development
Environment. Like the Secure Coding Assistant, several of
these tools provide early-detection mechanisms. All of these
tools are static analysis tools.

Even though several of the tools available provide an early-
detection mechanism, most of them are closed source and
do not disclose detailed information on what vulnerabilities
are detected and which detection mechanisms are used. The
one tool that is open source, FindBugs, focuses on byte code



Table 1: Static analysis tools that scan for security
vulnerabilities compared.
Company Tool Early/Late

Detection
Open/
Closed

Vericode White Box
Testing/Binary
Static Analysis

Late Closed

HP Fortify Static Code
Analyzer

Late Closed

WhiteHat Security Sentinel Source Late Closed
Klockwork Klockwork Insight Early Closed
Cigital, Inc. SecureAssist Early Closed
The Code Master Early Security

Vulnerability
Detector

Early Closed

Towson University Static Security
Vulnerability
Analyzer

Early Closed

Contrast Security Contrast for
Eclipse

Late Closed

Sonar Source SonarLint Early Closed
Checkmarx CxSuite Late Closed
Red Lizard Software Goanna Studio Early Closed
Univ. of Maryland FindBugs Late Open
Coverity, Inc. Coverity Prevent Early Closed
Univ. of N. Carolina ASIDE Early Open

and does not alert the developer when they write their source
code. There are free tools such as the Early Security Vulner-
ability Detector (ESVD) and Static Security Vulnerability
Analyzer, but these are graduate student research projects
that are no longer maintained [1, 13]. The most notable and
similar tool available is the ASIDE tool developed by the
University of North Carolina [19]. This is a well-developed
and advanced detection tool that focuses on OWASP rules
and web development whereas the Secure Coding Assistant
focuses on CERT rules and any type of Java development.
The Secure Coding Assistant is an education-driven, CERT-
based, open-source early-detection tool that will be main-
tained by the university and the development community.

3. DESIGN
3.1 Goals

In addition to being an open-source development tool that
evolves with public contribution, the Secure Coding Assis-
tant has two goals. The first is to provide software develop-
ers with instant feedback as they write their code. Similar
to the way a word processor would alert a writer when they
have a grammar or spelling mistake, the Secure Coding As-
sistant provides messages to the developer that are easy to
understand and integrate well into their workflow.

The second goal is to educate on the CERT secure cod-
ing practices. Deployed in computer science programming-
relevant courses, the tool would provide a foundation of se-
cure coding principles with little effort. To accomplish this
goal, the alerts that the programmers receive must provide
a message that clearly indicates what rule was violated and
what measures they can take towards remediation. This in-
formation is provided in the alert messages along with var-
ious examples of secure code violations. These mechanisms
create a natural learning environment for secure coding prac-
tices during the student coding process.

3.2 Architecture
The Secure Coding Assistant runs in the background of

the development environment and looks for violations to se-

cure coding rules. The high-level flow is outlined in Figure 1.
The only portion of the workflow that is language-specific is
the rule violation detection which is outlined in bold. The
workflow assumes that a syntax tree of the code segment
being analyzed has been built. A syntax tree is a represen-
tation of the source code that is easily traversed by a tool
like the Secure Coding Assistant. Changes to the syntax
tree initiate the code analysis process. Once the process be-
gins, any existing secure coding violations tied to the tree are
cleared before the tree is traversed. Each node of the tree is
analyzed and if the node contains a rule violation then a new
marker is created in the source code where the rule violation
is detected. Markers alert the programmer that a violation
has occurred and contain the name of the rule, the CERT
description and the recommendation from CERT to fix the
violation. After the syntax tree traversal is completed the
application returns to the initial start state and waits to run
again. The markers in the source code display in a tooltip
fashion. As the programmer makes changes to the source
code the tool runs again in the background, removes all ex-
isting markers and only adds new ones if violations exist.

Start

Compare new 
syntax tree to 

prior

Changed?No

Clear all existing 
markers and visit first 

node in syntax tree

Does node 
violate rule?

Create marker in 
source code with 
rule violation and 

remediation 
information

Yes

Yes

Last node 
reached?

Finish

Go to next 
node

No

Yes

No

Figure 1: High-level flow of Secure Coding Assis-
tant, language-specific node in bold.

4. IMPLEMENTATION
4.1 Rule Selection

The CERT website references 185 secure coding rules for
the Java programming language [14]. Before selecting which
rules to include in the tool, each was classified whether or not
automation would be possible. Some rules cannot be auto-
mated since they require knowledge of the problem domain.
NUM03-J, for instance, states that integer types in Java
cannot be used to represent unsigned data [10]. Java pro-
grams that need to interoperate with languages like C and
C++ must use integer types that can represent the range of
unsigned data. This type of rule is very difficult to detect
using an automated tool. The tool would need to know that
the application is going to be used with components that
use unsigned data. The only feasible way to detect this type
of vulnerability is to have knowledge of the intended use of
the code segment which is not practical for an automated
tool. Furthermore, there are entire categories that require
some type of metadata for an automated tool to function.
An example of this is the “Thread-Safety” category. With-
out knowledge that a code segment is intended to be run
in a multi-threaded environment the tool cannot adequately



detect rule violations. Rules like these are infeasible to im-
plement using a tool like the Secure Coding Assistant.

Many of the rules on the CERT website clearly state if
they are automatable or not [14]. Others do not say. Out
of the total 160 rules available there are 85 that appear to
be automatable. Also, the CERT website divides the se-
cure coding rules into 20 categories. Three out of the 20
categories do not contain any rules that can be automated
leaving 17 categories with eligible rules to automate. Rules
were chosen from these categories based on the severity of
the potential vulnerability and an effort was made to sample
from as many rule categories as possible. A total of 21 rules
were chosen covering 15 categories which represents 88% of
the eligible categories.

4.2 Plugin Implementation Details
Eclipse provides a Plugin Development Environment (PDE)

that gives plugin developers the ability to extend and cus-
tomize the development environment. The plugin structure
itself is defined using a markup language that contains in-
formation on what attributes of the environment are being
customized. For instance, a plugin that adds a custom com-
mand to one of the menus would extend org.eclipse.ui.

menus as well as org.eclipse.ui.commands. Along with the
extension points there are usually other attributes that are
defined such as the menu name or the name of the class that
contains an execution path when the command is invoked.
The Secure Coding Assistant extends two points. The first is
org.eclipse.jdt.core.compilationParticipant and the
second is org.eclipse.core.resources.problemmarker.
These extension points allow the plugin to participate in the
compilation process and create markers that will alert the
user a potential vulnerability exists.

4.3 The Abstract Syntax Tree
An Abstract Syntax Tree (AST) is a common represen-

tation of a block of source code. Syntax trees are traversed
depth-first and define the order of operations.

The Eclipse development environment provides a Java De-
velopment Tools (JDT) library. These tools contain a Java
language compiler and many other helpful compilation tools
including the AST representation of the source code that
is being compiled. Eclipse also provides a mechanism for
traversing the syntax tree. To traverse the tree, a class may
extend ASTVisitor and override one of the many visit()

methods. ASTVisitor defines a visit() method for each
type of node (method declaration, assignment, method in-
vocation, etc.) as well as a preVisit() and postVisit()

method which occurs before and after visiting every node.
The Secure Coding Assistant uses the preVisit() method
in its SecureNodeAnalyzer class which attaches to the AST
from the SecureCompilationParticipant. There is also a sec-
ond custom ASTVisitor that is used by the Utility Library
that supports the rule detection methods.

4.4 Utility Library
The rule detection logic for many of the CERT rules can be

reduced to several sub-problems. These problems are shown
in Table 2 along with the methods from the Utility Library
that have been developed to solve the given problem. These
methods use the ASTNodeProcessor to traverse the AST a
second time and gather data on the nodes that occur before

and after the node being processed. With this library of
reusable code, future rules may be built much easier.

Table 2: Utility Library methods by problem solved.
Problem Solved Method
Was a call made to method x? calledMethod()
Was method x called prior to
method y?

calledPrior()

Was a variable x modified after a
call to method y?

modifiedAfter()

Was class c instantiated with
argument a?

containsInstanceCreation()

What block b encloses node n? getEnclosingNode()
Is argument a in a list of
arguments l?

argumentMatch()

Retrieve method declaration d
from a superclass when method m
is overriding it.

getSuperClassDeclaration()

The Utility Library evolved throughout the implementa-
tion process. When a rule was chosen for implementation,
the pseudo-code for rule was added as comments to the
source code. If a step in the pseudo code appeared to be
common enough to be reusable in other rules, then it was
added to the utility library rather than implemented in the
rule logic itself. Even though the Utility Library operates
alongside the rule detection logic which is language-specific,
the parameters of the methods in the library are designed
to be used for multiple programming languages. There were
also several instances where method overloading was help-
ful. For instance, calledMethod() was implemented three
times. Once to check to see if a method is called from a
given class, again to see if it is called from a base class and
lastly to see if it is called with particular arguments.

4.5 Rule Logic
Each rule implements the interface IRule and uses the

“protected” class modifier so they cannot be instantiated di-
rectly. A call to RuleFactory.getAllRules() returns an
ArrayList of references to each rule that has been fully imple-
mented. The IRule interface provides a level of abstraction
that can be used in marker creation and node checking since
all rules share the same fundamental properties. These fun-
damental properties implemented by all secure coding rules
in the tool are shown in Table 3.

Table 3: The IRule interface.
Method Signature Description
boolean violated(ASTNode) Checks to see if the rule has

been violated in a given node
String getRuleText() The description of the rule

that was violated
String getRuleName() The name of the rule

violated
String getRuleRecommendation() The recommended action

that will satisfy the rule
int securityLevel() The security level of the

violatedrule, values are
defined as LOW, MEDIUM,
and HIGH in the
Global.Markers class

The IRule.violated() method has one parameter, the
node that is being evaluated, and returns true if a rule vi-
olation was detected at the node location and false other-
wise. This makes iterating through a large set of rules very
straightforward as shown in Figure 2. In this code segment
a collection of rules, built by RuleFactory.getAllRules(),



each tests a node in the syntax tree. Since this is in the
overridden preVisit method, it is run against each node in
the syntax tree in a depth-first traversal.

public void preVisit (ASTNode node) {
// Iterate through rules
for (IRule rule : m_rules)

if(rule.violated(node))
m_insecureCodeSegments.add(new

InsecureCodeSegment(node , rule ,
m_context)); }

Figure 2: Iterating through rule collection.

5. EVALUATION
5.1 Accuracy
5.1.1 CERT Validation

The CERT website lists several code samples for each se-
cure coding rule along with the rule definition. The samples
are presented in pairs, first is an example of a violation of
the rule and next is the corrected code segment. Figure 3
shows the Secure Coding Assistant detecting an IDS00-J vi-
olation in a code segment taken from the CERT website [9].
In this example the query string is built using parameters
supplied by the user. The alert window cites CERT’s solu-
tion to use a PreparedStatement instead. Rule logic was not
considered to be complete until all secure coding violation
examples shown on the CERT website for that particular
rule could be detected by the tool.

Figure 3: IDS00-J violation from CERT detected
with Secure Coding Assistant

5.1.2 False Positive Study
The Stanford SecuriBench [7] was used for the false posi-

tive study. It consists of applications that have various types
of documented vulnerabilities. The Stanford group identi-
fied 30 vulnerabilities in 2005 when SecuriBench was first
made public. After running seven of the eight programs
through the Secure Coding Assistant several thousand po-
tential CERT violations were detected.

The Secure Coding Assistant generated 4,172 secure cod-
ing alerts, but the overall distribution shown in Table 4 is
quite interesting. Only 8 out of the 21 implemented rules
detected violations. Of those 8 rules, 77% of the violations
detected were all in one rule, EXP00-J, which states that
a programmer should never ignore a value returned by a
method [8]. The reason for this is that method return val-
ues are often indicators of whether or not the call was suc-
cessful or they contain some other output that is beneficial
to the caller of the method. According to CERT, “Ignor-
ing method return values can lead to unexpected behavior.”

Upon further investigation, it is not always clear what is
to be done with the return value. The next highest rule
violation detected was ERR08-J which cautions developers
against catching a NullPointerException or any of its an-
cestors [15]. This type of exception is thrown when an ap-
plication is running and attempts to dereference a pointer
that has not been initialized to a value. According to CERT,
when this type of runtime error is ignored the application be-
comes unstable. Rather than catching the exceptions, CERT
advises that the application terminate immediately.

Since EXP00-J and ERR08-J both contain a large number
of exceptional cases, they have been excluded from the false
positive study. To identify the false positive results, each
alert was visually inspected and only categorized as a “true
positive” if the code segment was a true reflection of the
secure coding rule outlined by CERT; all others are classified
as a “false positive.” The results of this study in Table 5
reflect an overall false positive rate of 8.6% which are isolated
to the IDS00-J, IDS11-J and MSC02-J CERT rules.

The largest false positive result was found in detecting
the MSC02-J rule. This rule states that a cryptographically
secure random number generator should always be used in
applications where security is important. The false positive
results logged were instances where the random number was
being used for purposes besides security. Visual inspection
showed the numbers were used for a randomly sorted list
which was not related to application security. Fixing this is-
sue with MSC02-J would be difficult since it requires knowl-
edge of how the random number is used. Adding a set of
meta tags to the tool to allow programmers to disable secu-
rity warnings for a line of code would solve this issue. For
example, putting @SuppressSecurity before the line that
generates the alert would cause that rule to be ignored when
evaluating the following line for potential vulnerabilities.

The next highest false positive rate is seen in the IDS00-J
rule detection which checks for correct usage of the Pre-

paredStatement.setString() method. All of the false pos-
itive results stemmed from query strings that did not require
user input. In these cases, the value being inserted into the
query string was a constant value. Additional analysis on
how the query string is built would be required to reduce the
false positive rate for IDS00-J. This would include parsing
the expression into subcomponents and tracing their origin
in the source code. In cases where the input is coming from
other services or modules this type of a trace would not be
feasible.

5.1.3 False Negative Study
A false negative analysis of the Secure Coding Assistant

requires segments of Java source code with known vulnera-
bilities. Due to unavailability of documented CERT viola-
tions outside of the CERT website, a limited false negative
analysis of the Secure Coding Assistant was performed. It
was done by looking for examples of insecure Java code from
organizations that document vulnerabilities like the Open
Web Application Security Project (OWASP) and Common
Weakness Enumeration (CWE). The first test is the exam-
ple shown on the OWASP website [11] for preventing SQL
injection attacks in Java. Our tool accurately detected the
violation as shown in Figure 4.

Next, the CWE library was searched for code that would
relate to the IDS01-J rule to normalize strings before val-



Table 4: SecuriBench test results.
Level Full Name Total Percent
L2 EXP00-J. Do not ignore values returned by methods 3,211 77.0%
L1 ERR08-J. Do not catch NullPointerException or any of its ancestors 740 17.7%
L2 MET04-J. Do not increase the accessibility of overridden or hidden methods 138 3.3%
L1 IDS00-J. Prevent SQL injection 42 1.0%
L1 MET06-J. Do not invoke overridable methods in clone() 25 0.6%
L1 IDS11-J. Perform any string modifications before validation 7 0.2%
L1 MSC02-J. Generate strong random numbers 7 0.2%
L1 IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method 2 0.0%
L1 IDS01-J. Normalize strings before validating them 0 0.0%
L1 FIO08-J. Distinguish between characters or bytes read from a stream and -1 0 0.0%
L1 SEC07-J. Call the superclass’s getPermissions() method when writing a custom class loader 0 0.0%
L1 SER01-J. Do not deviate from the proper signatures of serialization methods 0 0.0%
L1 STR00-J. Don’t form strings containing partial characters from variable-width encodings 0 0.0%
L2 ENV02-J. Do not trust the values of environment variables 0 0.0%
L2 EXP02-J. Do not use the Object.equals() method to compare two arrays 0 0.0%
L2 NUM09-J. Do not use floating-point variables as loop counters 0 0.0%
L2 OBJ09-J. Compare classes and not class names 0 0.0%
L3 DCL02-J. Do not modify the collection’s elements during an enhanced for statement 0 0.0%
L3 LCK09-J. Do not perform operations that can block while holding a lock 0 0.0%
L3 NUM07-J. Do not attempt comparisons with NaN 0 0.0%
L3 THI05-J. Do not use Thread.stop() to terminate threads 0 0.0%

Total 4,172

Table 5: False positive analysis.
Rule Total

Count
True
Pos.
Count

True
Pos.
%

False
Pos.
Count

False
Pos.
%

MET04-J 138 138 100.0% 0 0.0%
IDS00-J 42 29 69.0% 13 31.0%
MET06-J 25 25 100.0% 0 0.0%
IDS11-J 7 5 71.4% 2 28.6%
MSC02-J 7 3 42.9% 4 57.1%
IDS07-J 2 2 100.0% 0 0.0%
Total 221 202 91.4% 19 8.6%

Figure 4: Output of SQL injection detection.

idation. Figure 5 from the CWE Dictionary [17] is in the
“Validate Before Canonicalize” section but is similar to the
IDS01-J rule to validate before normalizing a string. In this
example the path variable is being tested to see if it begins
with /save_dir/ but there is no guarantee that the path
name is in canonical form. To correct this code, the path

string needs to be converted to canonical form before the
comparison. Unfortunately, the violation went undetected
by the Secure Coding Assistant. The key difference between
the IDS01-J rule on the CERT website and the CWE exam-
ple is that the CWE example includes canonicalization in
the category of normalization but the CERT rule only gives
the example of the normalize method. This type of vulnera-
bility would be difficult to detect since there is no indication
that the text string represents a path and the canonical form
of the path depends on the operating system.

Another code segment from CWE is shown in Figure 6
which illustrates a vulnerability that should be detected un-
der the CERT OBJ09-J rule. OBJ09-J states that class com-
parison should be done using the == operator on the class
objects themselves and not the class names. In the example

String path = getInputPath ();
if (path.startsWith("/safe_dir/")) {

File f = new File(path);
return f.getCanonicalPath (); }

Figure 5: Validate before canonicalize example from
CWE [17].

public boolean equals(Object obj) {
boolean isEquals = false;
// first check to see if the object is of the same

class
if (obj.getClass ().getName ().equals(

this.getClass ().getName ()))
// then compare object fields
if (...) { isEquals = true; }

return isEquals ;}

Figure 6: Comparison of classes by name from CWE
[17].

given, changing the comparison line to obj.getClass() ==

this.getClass() would rectify the problem. The Secure
Coding Assistant successfully detected the vulnerability.

5.2 Efficiency
The Eclipse development environment has a responsive-

ness monitoring tool that will log delays over a certain thresh-
old. The efficiency analysis for the Secure Coding Assistant
was done by setting the monitor threshold to 10 milliseconds
then loading 5 SecuriBench source code files 3 times with the
plugin enabled and 3 times with the plugin disabled. The
difference between the average load time without the plugin
and the average load time with the plugin was recorded as
the increase in load. The results of the study in Table 6 show
that the plugin added an additional 0.03 to 0.20 seconds to
the load time for each source file. There appeared to be
a correlation between the amount of additional processing
time and the number of detected alerts. The last column
in the table shows the additional time per alert and ranges
from 2 to 4.5 milliseconds.



Table 6: Plugin efficiency analysis.
Application Source File Alerts Increase

(sec.)
Time per
Alert (ms)

pebble SimpleBlog.java 46 0.2037 4.428
roller WebLogEntry-

FormAction.java
16 0.0713 4.458

webgoat CreateDB.java 49 0.1923 3.925
snipsnap Configuration-

Map.java
23 0.0270 1.174

snipsnap Configura-
tionProxy.java

19 0.0380 2.000

6. LIMITATIONS, CONCLUSION AND
FUTURE WORK

The Secure Coding Assistant has demonstrated practical,
efficient and accurate applications for education in computer
science. Future development work will focus on fine-tuning
the existing rule detection logic, building logic for additional
rule detection, expanding the tool to support additional pro-
gramming languages and adding additional features.

The SecuriBench testing showed that some rules like the
EXP00-J rule need additional documentation on exception
cases. The Secure Coding Assistant can help detect such
cases and aid in fine-tuning the CERT rule library. The false
positive and false negative study showed that there are a few
adjustments that could be made to the rule logic to improve
performance. There are also several rules that cannot be
automated because the rule itself is context-specific. For
instance, whether or not an application is running in a multi-
threaded environment and requires thread safety or whether
or not the Java application is interoperating with programs
developed in other programming languages. These types of
things cannot be identified through code inspection but a
system of meta tags could be developed to indicate whether
or not a block of code requires a certain type of security.

There are many static analysis tools that are available to
the programming community. Several of these are Eclipse
plugins, a few of them provide early-detection techniques
but none of them are open-source learning tools for the
CERT secure coding rules. The Secure Coding Assistant
provides the development community with an educational
tool in secure coding practices. It is open source, exten-
sible and will be maintained. For more detailed informa-
tion, please visit the project website at http://benw408701.
github.io/SecureCodingAssistant/.

7. REFERENCES
[1] J. Dehlinger, Q. Feng, E. Oestrich, and M. Smith.

SSV Checker - An Eclipse plug-in interface static
security vulnerability checker, Aug. 26 2012. URL:
http://ssvchecker.sourceforge.net/ [accessed:
2015-11-15].

[2] B. Elgin, M. Riley, and D. Lawrence. Hacked wide
open.(home depot fails to improve security).
Bloomberg Businessweek, pages 39–40, Sept. 22 2014.

[3] C. Frates and C. Devine. Government hacks and
security breaches skyrocket. CNN Wire, Dec. 19 2014.

[4] J. J. Gelsomini and K. H. Garcia. Anthem’s data
breach impacts many anthem and non-anthem plans:
Necessary employer actions now. Employee Benefit
Plan Review, 69(11):5–7, 2015.

[5] HT Media Ltd. Fewer than 1% of engineering students

skilled in secure programming. Mint, Feb. 2014.

[6] T. F. Lindeman. Target acknowledges security breach;
40 million accounts compromised. McClatchy -
Tribune Business News, Dec. 20 2013.

[7] B. Livshits, M. Martin, M. Lam, J. Whaley, D. Avots,
M. Carbin, and C. Unkel. Stanford SecuriBench, Dec.
21 2005. URL: http:
//suif.stanford.edu/˜livshits/securibench/intro.html
[accessed: 2015-12-23].

[8] D. Mohindra. EXP00-J. Do not ignore values returned
by methods, Nov. 03 2015. URL:
https://www.securecoding.cert.org/confluence/
display/java/EXP00-J.+Do+not+ignore+values+
returned+by+methods [accessed: 2015-12-23].

[9] D. Mohindra. IDS00-J. Prevent SQL injection, Nov.
03 2015. URL:
https://www.securecoding.cert.org/confluence/
display/java/IDS00-J.+Prevent+SQL+injection
[accessed: 2015-12-22].

[10] D. Mohindra. NUM03-J. Use integer types that can
fully represent the possible range of unsigned data,
June 03 2015. URL: https:
//www.securecoding.cert.org/confluence/display/java/
NUM03-J.+Use+integer+types+that+can+fully+
represent+the+possible+range+of++unsigned+data
[accessed: 2015-11-01].

[11] OWASP. Preventing SQL Injection in Java, Aug. 14
2014. URL: https://www.owasp.org/index.php/
Preventing SQL Injection in Java [accessed:
2016-02-06].

[12] M. K. Pandit. Developing secure software using aspect
oriented programming. IOSR Journal of Computer
Engineering, 10(2):28–34, 2013.

[13] L. Sampaio. The Code Master, June 17 2015. URL:
http://thecodemaster.net/ [accessed: 2015-11-15].

[14] S. Shrum. 2 - Rules - CERT Oracle Coding Standards
for Java, Apr. 07 2015. URL:
https://www.securecoding.cert.org/confluence/
display/java/2+Rules [accessed: 2015-11-14].

[15] D. Svoboda and A. Hicken. ERR08-J. Do not catch
NullPointerException or any of its ancestors, Nov. 03
2015. URL: https://www.securecoding.cert.org/
confluence/display/java/ERR08-J.+Do+not+catch+
NullPointerException+or+any+of+its+ancestors
[accessed: 2015-12-23].

[16] The Mitre Corporation. CVE - Download CVE, Nov.
13 2015. URL: https://cve.mitre.org/cve/cve.html
[accessed: 2015-11-15].

[17] The Mitre Corporation. CWE-2000: Comprehensive
CWE Dictionary, Dec. 08 2015. URL:
http://cwe.mitre.org/data/slices/2000.html [accessed:
2016-02-06].

[18] A. Vamialis. Online service providers and liability for
data security breaches. Journal of Internet Law,
16(11):23–33, 2013.

[19] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton.
ASIDE: IDE support for web application security.
ACSAC 2011, Dec. 2011.

[20] J. Zhu, J. Xie, H. R. Lipford, and B. Chu. Supporting
secure programming in web applications through
interactive static analysis. Journal of Advanced
Research, 5(4):449–462, 2014.


